Large-Scale Parallel Nonlinear Optimization for High-Resolution 3D-Seismic Imaging

Olaf Schenk Computer Science Department University of Basel

Tarje Nissen-Meyer Institute of Geophysics ETH Zurich

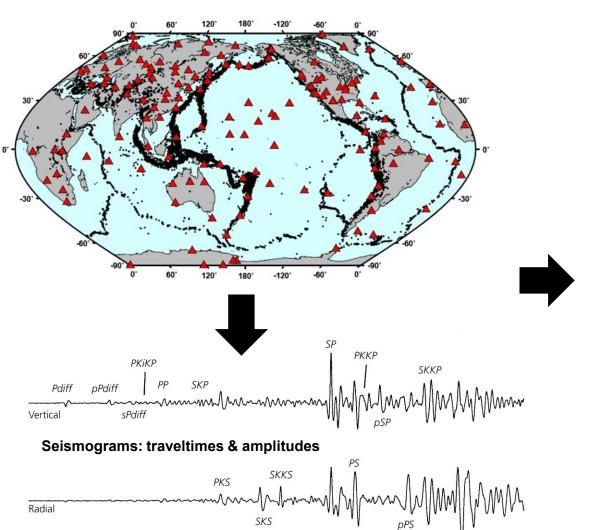
HP2C Kick-off Meeting, USI Lugano March 16, 2010

HP2C Project Partners

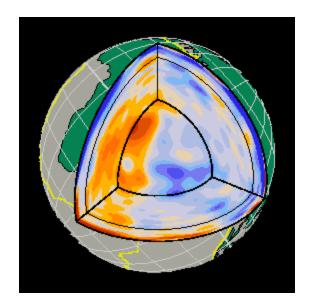
- Large-Scale Parallel Nonlinear Optimization for 3D-Seismic Imaging
 - ETHZ: Institute of Geophysics & Swiss Seismological Service
 - D. Giardini, L. Boschi, T. Nissen-Meyer (Computational Seismology)
 - University of Basel: Math&Computer Science Department
 - M. Grote (Math., Computational Wave Propagation)
 - O. Schenk, H. Burkhart (CS, Computational Optimization and HPC)
 - Academic and Industrial Cooperation Partners:
 - A. Wächter (IBM Watson, 6-month Sabbatical, Computational Optimization)
 - J. Tromp (Princeton 3-month Sabbatical, Computational Seismology)
 - NVIDIA Research, summer intern + consulting
- HP2C Funding:
 - 2 PostDocs & 1 PhD (U Basel), 1 PostDoc (ETHZ)

Seismic tomography: Mapping the Earth's structure and dynamics

Seismicity and seismometers



Earth models for seismic (compressional/shear) velocities



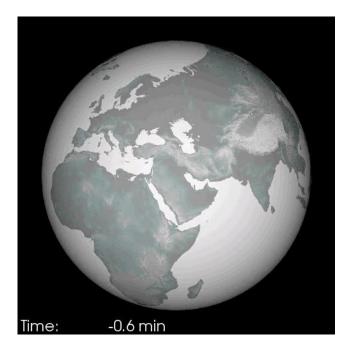
Left to right: Solving the forward and inverse problem

The forward problem

Find ground displacement d_o upon assumed earthquake source characteristics s and background earth model m_o:

 $F: (m_o, s_o) \rightarrow d_o$

Solution to the (linear) elastodynamic wave equation F



Simplified model:

- Normal-mode summation
- Reflectivity methods

Complex model:

- Finite-difference methods
- Discontinuous Galerkin methods
- Spectral-element methods

Peter, Boschi, Woodhouse (2009)

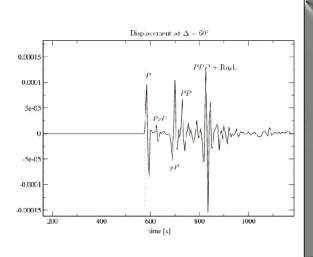
The inverse problem

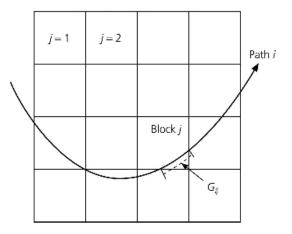
Find earth model *m* upon recorded seismic data *d*, assumed initial model m_0 and source characteristics s_0 : $G^{-1}: (d, m_0, s_0, d_0) \rightarrow m$

Nonlinear, overdetermined, non-unique, ill-posed, unverifiable

Calculation of G (dd /dm):

- Geometrical ray theory
- Wave-based Fréchet derivatives



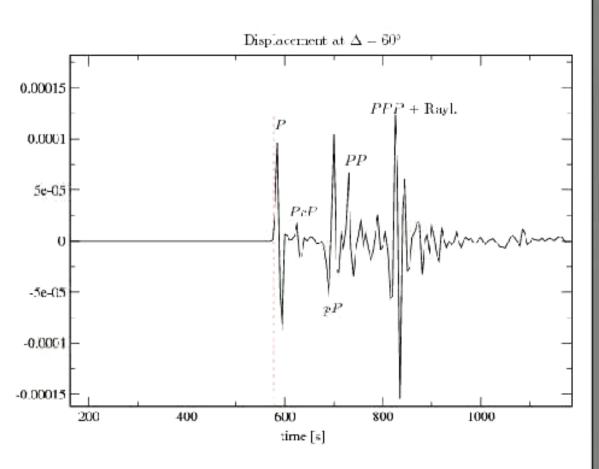


Inversion approaches:

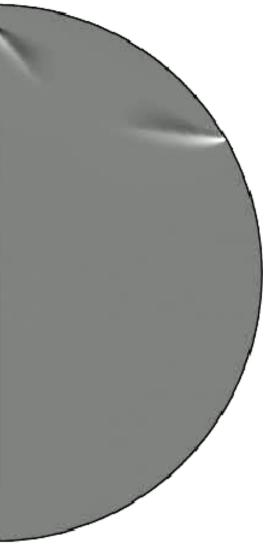
- linearization: $d_i = G_{ij} m_i$
- gradient techniques
- probabilistic methods

UNIVERSITÄT BASEL

Computer Science Department - High Performance Computing Group



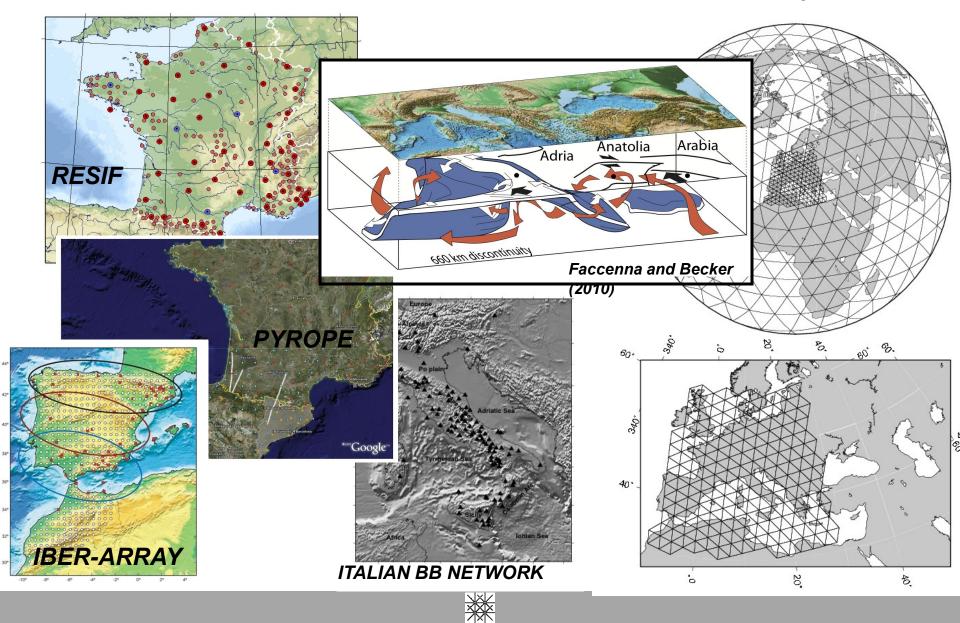
UN.



UNIVERSITÄT BASEL

Computer Science Department - High Performance Computing Group

The Mediterranean basin as a natural laboratory



UNIVERSITÄT BASEL

Computer Science Department - High Performance Computing Group

120

110

130

Adjoint tomography: Southern California

143 earthquakes

- 6,864 simulations
- 168 cores per simulation
- 45 minutes of wall-clock time per simulation

140

∆T = 9.60 s

∆T = 7.00 s

∆T = 4.90 s

∆T = 2.90 s

∆T = 0.95 s

140

150

80

150

80

864,864 core hours

B

Z-1D

Z-m00

Z-m01

Z-m04

Z-m16

80

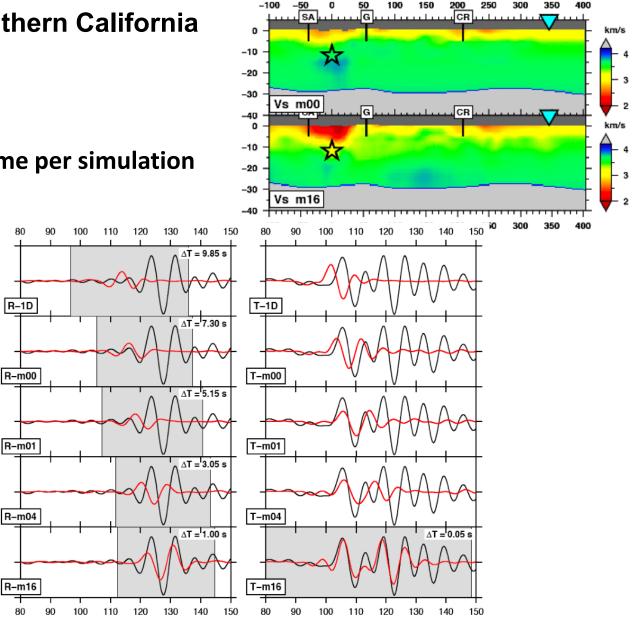
90

100

110

120

130



Computational tasks

Global spectral-element method

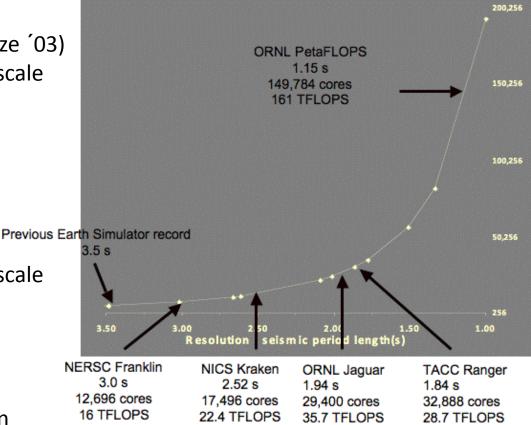
- highly efficient, explicit (Gordon Bell prize '03)
- solves all relevant physics at the global scale
- open-source (geodynamics.org)
- typical global simulation: 10 hours on 400 cores

Local discontinuous Galerkin method

- highly flexible (tetrahedral elements)
- solves all relevant physics at the global scale
- computationally expensive, not open-access yet

Adjoint tomography

- 3 simulations per earthquake & iteration
- cost independent of # seismometers
- 16 iterations needed in Southern California
- No Hessian preconditioning available



Forward Problem in 3D Seismic Imaging

Second-order Wave Equation:

$$\frac{\partial u}{\partial t^2} - \nabla \cdot c^2 \nabla u = f \text{ in } \Omega \times [0, T],$$

$$c^2 \nabla u \cdot n = 0 \text{ on } \Gamma \times [0, T],$$

$$u = 0 \text{ at } t = 0,$$

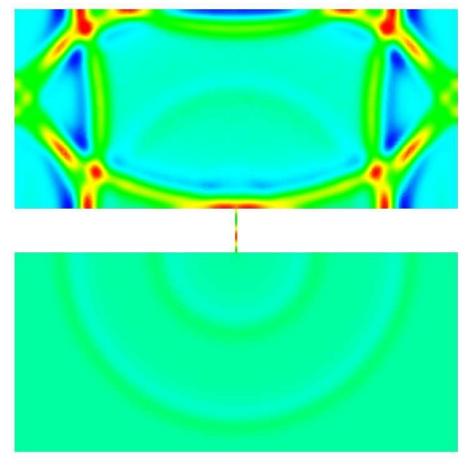
$$\dot{u} = 0 \text{ at } t = 0,$$

Discontinuous Galerkin Methods (M. Grote, A. Schneebeli, D.Schötzau, 2007)

- Flexibility in mesh-design (tetrahedral elements)
- easily handles varying polynomial degree (hp-adaptivity)
- (Block-)Diagonal mass matrix & local time stepping → truly explicit¶llel
- GPU Code **HEDGE** (A. Klöckner, JCP 2009)

Discontinuous Galerkin (DG) method

Numerical Experiments in 2D (4th order in time, M. Grote, D. Schötzau, 2009)



h^{coarse}=0.0125, h^{fine}=7.62.10⁻⁵ = h^{coarse} /170

Seismic Inversion

minimize
$$\frac{1}{2} \sum_{j=1}^{N_r} \int_0^T \int_{\Omega} [u^* - u^2 \delta(x - x_j) \ d\Omega \ dt + \beta R(q)$$

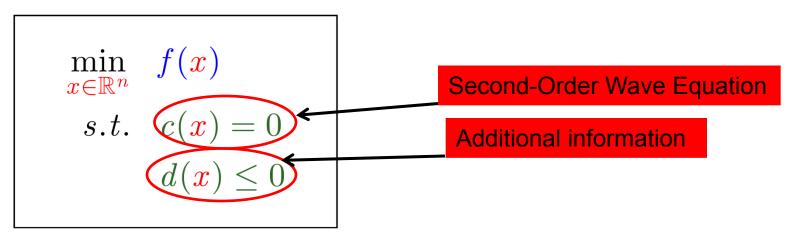
s.t.
$$\frac{\partial^2 u}{\partial t^2} - \nabla (c^2) (u) = f \text{ in } \Omega \times [0, T],$$
$$(c^2) \nabla u \cdot n = 0 \text{ on } \Gamma \times [0, T],$$
$$u = 0 \text{ at } t = 0,$$
$$\dot{u} = 0 \text{ at } t = 0,$$

Large-Scale Optimization

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} \frac{f(x)}{c(x)} = 0 \\ d(x) \le 0$$

Nonlinear Optimization	Small-Scale (10 ⁵ variables)	Large-Scale (10 ⁶ to 10 ⁸ variables)
Multicores (<16 cores)	 Randomized metaheuristics (Evolutionary Algorithms, Simulated Annealing, Ant Colony) Derivative-free optimization Interior-point optimization 	 Interior-point optimization Fast convergence Need derivate information (Jacobian, Hessian matrices) Matrices are indefinite and highly ill-conditioned
Manycores (~1'000 cores)		- Interior-point optimization

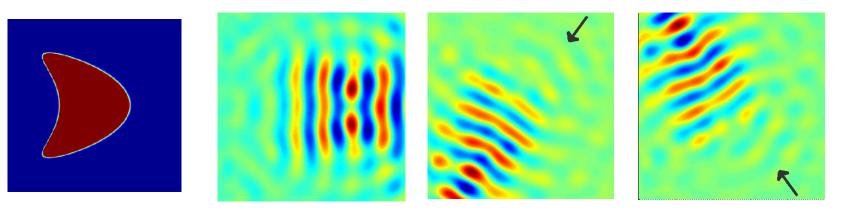
Large-Scale Optimization



- Nonlinear, overdetermined, non-unique, ill-posed, nonconvex and LARGE-SCALE
- Interior point methods are good candidates for very large problems.
- Optimization Algorithm:
 - Primal-dual interior point method (A. Wächter, ACM TOMS, 2006)
 - Line-search filter method using inexact steps to ensure global convergence (Curtis, Wächter, S., SISC 2010)
 - Massively parallel implementation on up to 1'000 cores (A. Wächter, S., 2010)
 - Parallel inexact sparse linear algebra kernel (A. Sameh, S., A. Wächter, 2010)

Why Optimization with Inequalities?

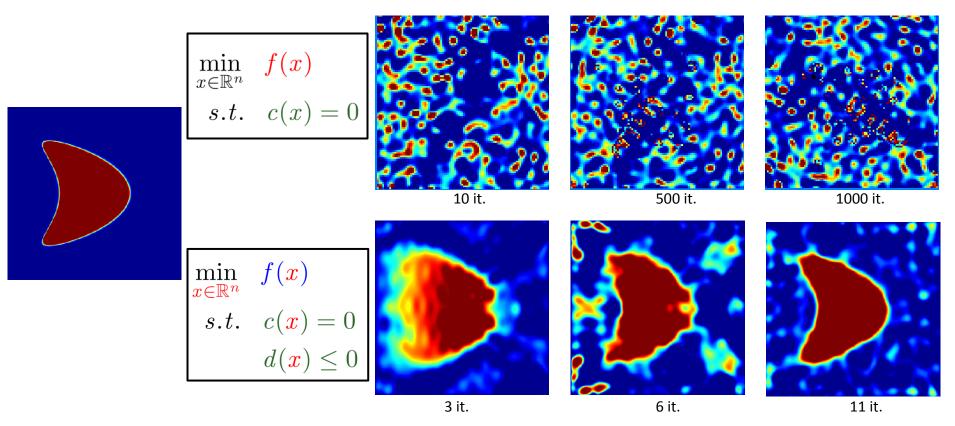
Inverse Problems: 2D Time-harmonic Wave Equation



Source: SNF Project Multiscale Analysis and Simulation for Waves in Strongly Heterogeneous Media (Grote, Schenk, 2010)

Why Optimization with Inequalities?

Inverse Problems: 2D Time-harmonic Wave Equation



Source: SNF Project Multiscale Analysis and Simulation for Waves in Strongly Heterogeneous Media (Grote, Schenk, 2010)

The KKT conditions for the Second-Order Wave Equation

Lagrangian functional

$$\mathcal{L}(u,\lambda,q) = \sum_{j=1}^{N_r} \int_0^T \int_\Omega [u^* - u]^2 \,\delta(x - x_j) \, d\Omega \, dt + \beta R(q) + \int_0^T \int_\Omega \lambda(\frac{\partial^2 u}{\partial t^2} - \nabla \cdot q \nabla u - f) \, d\Omega \, dt,$$

First order optimality condition

A(q)u = f in $\Omega \times [0, T]$,

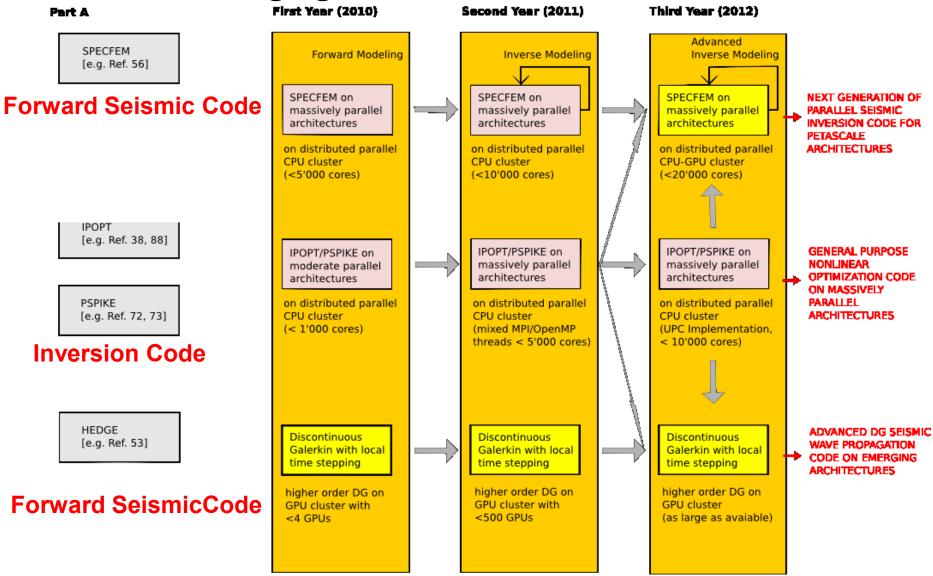
... too large to invert.

$$A^{*}(q)\lambda = \sum_{j=1}^{N_{r}} [u^{*} - u] \begin{bmatrix} \nabla_{uu}^{2}\mathcal{L} & \nabla_{uq}^{2}\mathcal{L} & \nabla_{u\lambda}^{2}\mathcal{L} \\ \nabla_{qu}^{2}\mathcal{L} & \nabla_{qq}^{2}\mathcal{L} & \nabla_{q\lambda}^{2}\mathcal{L} \\ \nabla_{qu}^{2}\mathcal{L} & \nabla_{qq}^{2}\mathcal{L} & \nabla_{q\lambda}^{2}\mathcal{L} \end{bmatrix} \begin{cases} \bar{u} \\ \bar{q} \\ \bar{\lambda} \end{cases} = -\begin{cases} \nabla_{u}\mathcal{L} \\ \nabla_{q}\mathcal{L} \\ \nabla_{\lambda}\mathcal{L} \end{cases} \\ \nabla_{\lambda}\mathcal{L} \end{cases}$$

KKT matrix is of size $2(N_nN_t)+N_n$. Here N_n is the number nodes, and N_t are the time steps.

- G. Biros and O. Ghattas, Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver, SIAM SISC, 2005
- Final Goal is to include inequality constraints into the inversion process (research with A. Wächter, IBM Watson)

3D Seismic Imaging Software Stack



Thank you for your attention! Questions?

