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Scientificvision — «More is differents

«o2  Weakly- versus strongly-correlated systems _
Hilbert space

Good approximations exist for weakly-correlated systems O( N )

» Density Functional Theory / Kohn-Sham equations

» Diagrammatic perturbation theory / Landau Fermi-liquid theory

Strongly-correlated systems are much less understood (f) ( e N )

» Interaction between a large number of quantum particles leads to new physical phenomena
— Superconductors — Luttinger liquids — Correlated insulators — Quantum magnets — Quantum Hall systems
» Many open problems
— Origin of high-T. superconductivity

— Ground states of frustrated quantum magnets

— Quantum phase transitions

— New types of excitations (collective modes, fractionalization, anyons) ((More |S differeni»
(P. W. Anderson)
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One- and quasi-one dimensional systems

Frustrated quantum magnets

Fermions in two dimensions



Scientificvision— (1+€) dimension
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Low dimensionality magnifies the role of interactions
» Long-range order is suppressed by quantum fluctuations
» Mean-field approaches fail

» Particle motion induces collective motion

New paradigm: Luttinger liquid
» Low-energy excitations are collective modes
» Spin and charge degrees of freedom are separated

» Dimensional crossovers with lowering temperature: 1D = 2D — 3D

Good analytical methods exist in strict 1D...
— Exact solutions (Bethe Ansatz) — Effective field theories (bosonization)

» ... but they are limited to simple models and/or low energy

Density Matrix Renormalization Group (DMRG)
» Mature exact and powerful method for 1D and quasi-1D problems

» State-of-the-art: N = 300 in 1D or 8 x 20 in quasi-1D

Spin chains and ladders

J.
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Quantum wires
Nanotubes
Quantum Hall edge states
1D cold atoms systems



Scientificvision — Frustrated magnetism

Frustration due to geometry or competing interactions
» Large number of nearly degenerate ground states

» Rich excitation spectrum

The only reliable information comes from exact

diagonalization on small clusters AVAVAVA
AVAVAVAVA

i ilbert : 2V for N spins 1/2 NN NN N
» Size of Hilbert space: 2" for N spins 1/ . ezeze:e
» Sign problem in quantum Monte Carlo VAV‘VAV
» State-of-the-art: N<40 (using lattice symmetries)
» Kagome lattice requires at least N = 36 T“ungU|ur Kagome

» Pyrochlore lattice requires at least N = 48

Challenge

» Ground state and low-energy eigenvalues of sparse
matrices of dimension 10" Face-centered cubic Pyrochlore
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Scientificyision— Fermions in 2 dimensions _.

- l’ﬁ | [k

\-o';‘
SPC N b.. 'i

Fascinating open questions in 2D

» Competing orders -
<))
» Quantum phase transitions Cupruies %
. Manganites &
» Correlated insulators 9
Ruthenates 5
» High-T. superconductivity =
» Quantum Hall etfect (anyonic excitations) 016
carrier concentration p
Tremendous potential for applications "
100 téIMW' St Caz.xSrxRuO4
*
Two is exactly between one and infinity .. iy

» Analytical methods work in 1D but fail in 2D TFL

» Mean-field approaches are exact in oD, good in 3D, but dubious in 2D

@
» Numerical methods suffer from severe limitations Unconventional :
superconductor 4
— Sign problem in quantum Monte Carlo
— Bad scaling and finite-size etfects in exact diagonalization ‘ 1.5 2
x (Sr) Sr

2D organic conductors / Ferroelectrics / Multiferroics / 2D cold atomic gases



<52 Spin-1/2 Heisenberg mode!

sl — %ZJUS@--SJ- —MBH'ZQiSi
]

» Coupled quantum spins on a lattice

» Model for quantum magnets, quantum phase transitions

52, One-bund Hubbard mode]

i Zti? c,:-facja + h.c.) + UzniTnil

190
» Fermions on a lattice, with local electron-electron interaction t
» Model for high-T superconductors, correlated insulators, quantum phase transitions Nic = CiO'CiO'



Solution methods

Analytical
Diagrammatic theory
Bosonization
lave partices Powertul, but not sufficient
Bethe Ansaiz

Renormalization group

<52 Numericol

Exact diagonalization (ED) Needed f()r
Density-Matrix Renormalization Group (DMRG) ® QUGI’“"UHVG I'eSUhS
Quantum Monte Carlo (QMC) e |niractable prOblemS



Algorithms™—Exact diagonalizafion—

Advantages
» Can be used for any model

» Similar to configuration-interaction in quantum chemistry

Goal

» Obtain low-lying eigenstates of a sparse matrix
» Matrix size increases exponentially with problem size

— Heisenberg model: 2 — Hubbard model: 4"

— Only order-N non-zero elements per row, but irreqularly distributed

Implemeniailon 6n—|—1fv’n‘|‘1 — H’U,n — Uy Uy — 6nlvn—1

» Lanczos algorithm
Challenges -
» Large sparse and block-sparse linear algebra operations

— Distributed sparse matrix-vector multiplications for matrices of size 10'2 (state-of-the-art is 10°)

— Robust sparse matrix eigensolvers (treatment of roundoff errors requires MPI message ordering)

— Generation of sparse matrices (distributed search in huge tables)
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Algorithms'=Density-Matrix Renormulizuho 1.5
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Advantages .
140 P
» The best numerical method so far for 1D - ST\
" b ! " /a2
» Allows to compute equilibrium as well as out-of-equilibrium S 100} PR - 8
S | ;! -0y b
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» N matrices of size m x m. m grown as a low-order polynomial in N | L T
1994 1996 1998 2000Y 2002 2004 2006 2008
» Operations on block-sparse matrix with large dense blocks g
— Block generation (outer products) — Singular value decomposition — Eigenvalues, eigenvectors

Challenges
» Extend method to 2D by coupling chains
— m increases exponentially with number of chains W
» State-of-the-art
— With m = 103 to 104, 4 to 8 coupled chains of length 20 can be treated, depending on the model

» Target

— 1510 20 coupled chains,equivalent to a 20 x 20 2D lattice... 220 x 20 1 O 120



Algorithms — Others

«52  Tensor network algorithms

These avoid the exponential scaling when extending DMRG to 2D
» m x m matrices are replaced by rank-4 tensors
» Projected Entangled Pair States (PEPS)

» Multi-scale Entanglement Renormalization Ansatz (MERA)

Main difficulty

» Contraction of rank-4 tensors (memory requirement M ~ m*, time T~ m'2 = T ~ M3)

» m =5 possible on workstations, m = 10 needed for useful applications

ard
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factoring of perfectly parallel applications
Quantum Monte Carlo (QMC)

Stochastic Series Expansion (SSE)

» Importance sampling of terms in a Taylor expansion in coupling strength or inverse temperature



Team — UniGE

Thierry Giamarchi  Christophe Berthod ~ Adrian Kantian Pierre Bouillot
Principal investigator ~ QMC/DMFT DMRG / +-DMRG DMRG / +-DMRG



Team — EPFL

Frédéric Mila  Salvatore Manmana Sandro Wenzel Jean-David Picon
0P DMRG / +-DMRG SSE / QMC QMC / ED

-

Philippe Corboz

Starting next fall: Tensor algorithms



Team — ETHZ

-

Matthias Troyer  Sergei Isakov  Evgeny Kozik Sebastiano Pilati Philipp Werner
(o-P QMC / ED AMC QM DMFT
Peter Anders

DMFT

= Jan Gukelberger
Vi 2

Ping Nang Ma  Brigitte Surer Bela Bauer
AMC DMFT PEPS / MERA
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Team — 4 Developers

i

As soon as possible:

Module 1 Module 2 Module 3 Module 4

Exact diagonalization DMRG Tensor algorithms  Refactoring of
existing codes



