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Scientific vision — «More is different»

Weakly- versus strongly-correlated systems

Good approximations exist for weakly-correlated systems
‣ Density Functional Theory / Kohn-Sham equations

‣ Diagrammatic perturbation theory / Landau Fermi-liquid theory

Strongly-correlated systems are much less understood
‣ Interaction between a large number of quantum particles leads to new physical phenomena

— Superconductors!!!—!!!Luttinger liquids!!!—!!!Correlated insulators!!!—!!!Quantum magnets!!!—!!!Quantum Hall systems

‣ Many open problems

— Origin of high-Tc superconductivity

— Ground states of frustrated quantum magnets

— Quantum phase transitions

— New types of excitations (collective modes, fractionalization, anyons)
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Hilbert space

«More is different»
(P. W. Anderson)



Scientific vision — «More is different»

Weakly- versus strongly-correlated systems

One- and quasi-one dimensional systems

Frustrated quantum magnets

Fermions in two dimensions



Scientific vision — (1+ε) dimension

Low dimensionality magnifies the role of interactions
‣ Long-range order is suppressed by quantum fluctuations

‣ Mean-field approaches fail

‣ Particle motion induces collective motion

New paradigm: Luttinger liquid
‣ Low-energy excitations are collective modes

‣ Spin and charge degrees of freedom are separated

‣ Dimensional crossovers with lowering temperature: 1D → 2D → 3D

Good analytical methods exist in strict 1D...
— Exact solutions (Bethe Ansatz)!!!—!!!Effective field theories (bosonization)

‣ ... but they are limited to simple models and/or low energy

Density Matrix Renormalization Group (DMRG)
‣ Mature exact and powerful method for 1D and quasi-1D problems

‣ State-of-the-art: N = 300 in 1D or 8 ! 20 in quasi-1D

Organic conductors

Spin chains and ladders

Quantum wires
Nanotubes

Quantum Hall edge states
1D cold atoms systems



Frustration due to geometry or competing interactions
‣ Large number of nearly degenerate ground states

‣ Rich excitation spectrum

The only reliable information comes from exact 
diagonalization on small clusters
‣ Size of Hilbert space: 2N for N spins 1/2

‣ Sign problem in quantum Monte Carlo

‣ State-of-the-art: N<40 (using lattice symmetries)

‣ Kagome lattice requires at least N = 36

‣ Pyrochlore lattice requires at least N = 48

Challenge
‣ Ground state and low-energy eigenvalues of sparse 

matrices of dimension 1012

Scientific vision — Frustrated magnetism

Face-centered cubic Pyrochlore

KagomeTriangular

?



Scientific vision — Fermions in 2 dimensions

Fascinating open questions in 2D
‣ Competing orders

‣ Quantum phase transitions

‣ Correlated insulators

‣ High-Tc superconductivity

‣ Quantum Hall effect (anyonic excitations)

Tremendous potential for applications

Two is exactly between one and infinity
‣ Analytical methods work in 1D but fail in 2D

‣ Mean-field approaches are exact in "D, good in 3D, but dubious in 2D

‣ Numerical methods suffer from severe limitations

— Sign problem in quantum Monte Carlo

— Bad scaling and finite-size effects in exact diagonalization

Cuprates
Manganites
Ruthenates

2D organic conductors / Ferroelectrics / Multiferroics / 2D cold atomic gases



Models

Spin-1/2 Heisenberg model

‣ Coupled quantum spins on a lattice

‣ Model for quantum magnets, quantum phase transitions

One-band Hubbard model

‣ Fermions on a lattice, with local electron-electron interaction

‣ Model for high-Tc superconductors, correlated insulators, quantum phase transitions
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Solution methods

Analytical

Diagrammatic theory

Bosonization

Slave particles

Bethe Ansatz

Renormalization group

Numerical

Exact diagonalization (ED)

Density-Matrix Renormalization Group (DMRG)

Quantum Monte Carlo (QMC)

Powerful, but not sufficient}
Needed for
•Quantitative results
•Intractable problems 

}



Advantages
‣ Can be used for any model

‣ Similar to configuration-interaction in quantum chemistry

Goal
‣ Obtain low-lying eigenstates of a sparse matrix

‣ Matrix size increases exponentially with problem size

— Heisenberg model: 2N!!!—!!!Hubbard model: 4N

— Only order-N non-zero elements per row, but irregularly distributed

Implementation
‣ Lanczos algorithm

Challenges
‣ Large sparse and block-sparse linear algebra operations

— Distributed sparse matrix-vector multiplications for matrices of size 1012 (state-of-the-art is 109)

— Robust sparse matrix eigensolvers (treatment of roundoff errors requires MPI message ordering)

— Generation of sparse matrices (distributed search in huge tables)

Algorithms — Exact diagonalization
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Algorithms — Density-Matrix Renormalization Group

Advantages
‣ The best numerical method so far for 1D

‣ Allows to compute equilibrium as well as out-of-equilibrium

and time-dependent response

Goal
‣ N matrices of size m ! m. m grown as a low-order polynomial in N

‣ Operations on block-sparse matrix with large dense blocks

— Block generation (outer products)!!!—!!!Singular value decomposition   —   Eigenvalues, eigenvectors

Challenges
‣ Extend method to 2D by coupling chains

— m increases exponentially with number of chains W

‣ State-of-the-art

— With m = 103 to 104, 4 to 8 coupled chains of length 20 can be treated, depending on the model

‣ Target

— 15 to 20 coupled chains,equivalent to a 20 ! 20 2D lattice... 220×20 = 10120

A new and promising technique



Tensor network algorithms

These avoid the exponential scaling when extending DMRG to 2D
‣ m ! m matrices are replaced by rank-4 tensors

‣ Projected Entangled Pair States (PEPS)

‣ Multi-scale Entanglement Renormalization Ansatz (MERA)

Main difficulty

‣ Contraction of rank-4 tensors (memory requirement M !  m4, time T !  m12 ⇒ T !  M3)

‣ m = 5 possible on workstations, m = 10 needed for useful applications

Refactoring of perfectly parallel applications

Quantum Monte Carlo (QMC) 

Stochastic Series Expansion (SSE)
‣ Importance sampling of terms in a Taylor expansion in coupling strength or inverse temperature

Algorithms — Others



Team — UniGE

Pierre Bouillot
DMRG / t-DMRG

Adrian Kantian
DMRG / t-DMRG

Christophe Berthod
QMC/DMFT

Thierry Giamarchi
Principal investigator



Team — EPFL

Frédéric Mila
co-PI

Salvatore Manmana
DMRG / t-DMRG

Jean-David Picon
QMC / ED

Sandro Wenzel
SSE / QMC

Philippe Corboz
Tensor algorithmsStarting next fall:



Team — ETHZ

Matthias Troyer
co-PI

Sergei!Isakov
QMC / ED

Evgeny!Kozik
QMC

Sebastiano!Pilati
QMC

Philipp Werner
DMFT

Ping Nang Ma
QMC

Brigitte Surer
DMFT

Peter Anders
DMFT

Bela Bauer
PEPS / MERA

Jan Gukelberger
ED



Team — 4 Developers

Module 1
Exact diagonalization

Module 2
DMRG

Module 3
Tensor algorithms

Module 4
Refactoring of
existing codes

As soon as possible:


