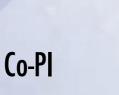
HP2C Kick-off meeting Lugano, March 16-17, 2008

Modern Algorithms for Quantum Interacting Systems

Christophe Berthod (UniGE)

Co-PI



60

Prof. Frédéric Mila

Prof. Thierry Giamarchi

(EPFL)

(UniGE)

Prof. Matthias Troyer

(ETHZ)

Scientific vision — «More is different»

Weakly- versus strongly-correlated systems

Good approximations exist for weakly-correlated systems

- Density Functional Theory / Kohn-Sham equations
- Diagrammatic perturbation theory / Landau Fermi-liquid theory

Strongly-correlated systems are much less understood

- Interaction between a large number of quantum particles leads to new physical phenomena
 - Superconductors Luttinger liquids Correlated insulators Quantum magnets Quantum Hall systems
- Many open problems
 - Origin of high-T_c superconductivity
 - Ground states of frustrated quantum magnets
 - Quantum phase transitions
 - New types of excitations (collective modes, fractionalization, anyons)

Hilbert space

 $\mathcal{O}(N)$

 $\mathcal{O}(e^N)$

«More is different» (P. W. Anderson)

Scientific vision — «More is different»

Weakly- versus strongly-correlated systems

One- and quasi-one dimensional systems

Frustrated quantum magnets

Fermions in two dimensions

Scientific vision $-(1+\varepsilon)$ dimension

Low dimensionality magnifies the role of interactions

- Long-range order is suppressed by quantum fluctuations
- Mean-field approaches fail
- Particle motion induces collective motion

New paradigm: Luttinger liquid

- Low-energy excitations are collective modes
- Spin and charge degrees of freedom are separated
- ▶ Dimensional crossovers with lowering temperature: $1D \rightarrow 2D \rightarrow 3D$

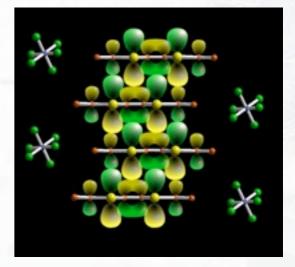
Good analytical methods exist in strict 1D...

- Exact solutions (Bethe Ansatz) Effective field theories (bosonization)
- ... but they are limited to simple models and/or low energy

Density Matrix Renormalization Group (DMRG)

- Mature exact and powerful method for 1D and quasi-1D problems
- State-of-the-art: N = 300 in 1D or 8 × 20 in quasi-1D

Organic conductors



Spin chains and ladders

Quantum wires Nanotubes Quantum Hall edge states 1D cold atoms systems

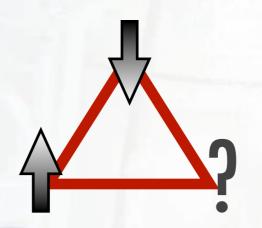
Scientific vision – Frustrated magnetism

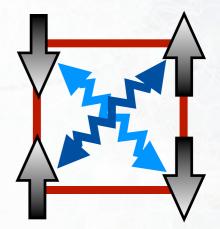
Frustration due to geometry or competing interactions

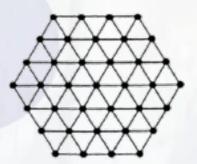
- Large number of nearly degenerate ground states
- Rich excitation spectrum

The only reliable information comes from exact diagonalization on small clusters

- ► Size of Hilbert space: 2^N for N spins 1/2
- Sign problem in quantum Monte Carlo
- State-of-the-art: N<40 (using lattice symmetries)</p>
- Kagome lattice requires at least N = 36
- Pyrochlore lattice requires at least N = 48

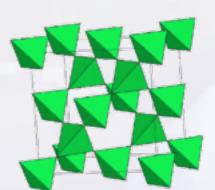






Triangular

Face-centered cubic



Kagome

Pyrochlore

Challenge

 Ground state and low-energy eigenvalues of sparse matrices of dimension 10¹²

Scientific vision – Fermions in 2 dimensions

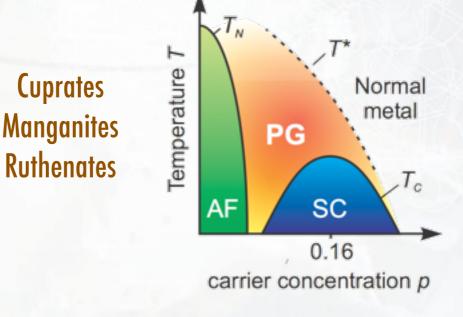
Fascinating open questions in 2D

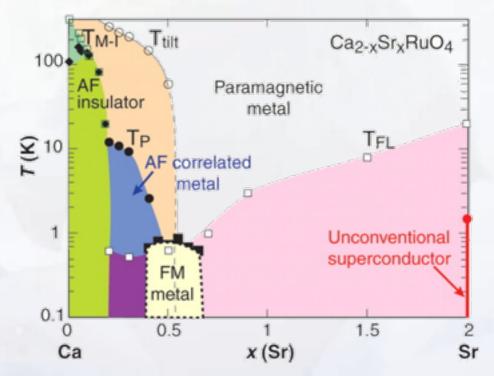
- Competing orders
- Quantum phase transitions
- Correlated insulators
- High-T_c superconductivity
- Quantum Hall effect (anyonic excitations)

Tremendous potential for applications

Two is exactly between one and infinity

- Analytical methods work in 1D but fail in 2D
- ▶ Mean-field approaches are exact in ∞D, good in 3D, but dubious in 2D
- Numerical methods suffer from severe limitations
 - Sign problem in quantum Monte Carlo
 - Bad scaling and finite-size effects in exact diagonalization





2D organic conductors / Ferroelectrics / Multiferroics / 2D cold atomic gases

Models

Spin-1/2 Heisenberg model

$$\mathcal{H} = \frac{1}{2} \sum_{ij} J_{ij} \, \boldsymbol{S}_i \cdot \boldsymbol{S}_j - \mu_{\rm B} \boldsymbol{H} \cdot \sum_i g_i \boldsymbol{S}_i$$

- Coupled quantum spins on a lattice
- Model for quantum magnets, quantum phase transitions

One-band Hubbard model

$$\mathcal{H} = \sum_{ij\sigma} t_{ij} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- Fermions on a lattice, with local electron-electron interaction
- Model for high-T_c superconductors, correlated insulators, quantum phase transitions

$$n_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$$

Solution methods

Analytical

Diagrammatic theory

Bosonization

Slave particles

Bethe Ansatz

Renormalization group

Numerical

Exact diagonalization (ED) Density-Matrix Renormalization Group (DMRG) Quantum Monte Carlo (QMC)

Powerful, but not sufficient

Needed forQuantitative resultsIntractable problems

Algorithms – Exact diagonalization

Advantages

- Can be used for any model
- Similar to configuration-interaction in quantum chemistry

Goal

- Obtain low-lying eigenstates of a sparse matrix
- Matrix size increases exponentially with problem size
 - Heisenberg model: 2^N Hubbard model: 4^N
 - Only order-N non-zero elements per row, but irregularly distributed

Implementation

Lanczos algorithm

Challenges

- Large sparse and block-sparse linear algebra operations
 - Distributed sparse matrix-vector multiplications for matrices of size 10¹² (state-of-the-art is 10⁹)
 - Robust sparse matrix eigensolvers (treatment of roundoff errors requires MPI message ordering)
 - Generation of sparse matrices (distributed search in huge tables)

 $\beta_{n+1}v_{n+1} = \mathcal{H}v_n - \alpha_n v_n - \beta_n v_{n-1}$ $(v_n^{\dagger} \mathcal{H} v_n) (v_n^{\dagger} \mathcal{H} v_{n-1})$

Algorithms – Density-Matrix Renormalization Gro

Advantages

- The best numerical method so far for 1D
- Allows to compute equilibrium as well as out-of-equilibrium and time-dependent response

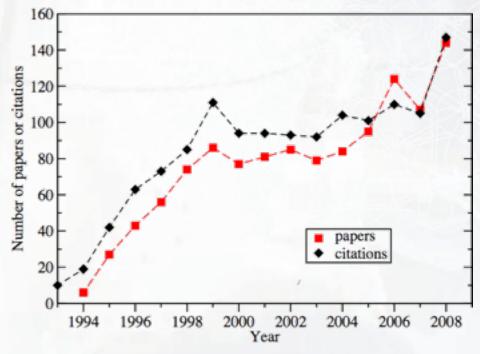
Goal

- N matrices of size m imes m. m grown as a low-order polynomial in N
- Operations on block-sparse matrix with large dense blocks
 - Block generation (outer products) Singular value decomposition Eigenvalues, eigenvectors

Challenges

- Extend method to 2D by coupling chains
 - m increases exponentially with number of chains W
- State-of-the-art
 - With $m = 10^3$ to 10^4 , 4 to 8 coupled chains of length 20 can be treated, depending on the model
- Target
 - 15 to 20 coupled chains, equivalent to a 20×20 2D lattice...

A new and promising technique



 $20 \times 20 = 1$

Algorithms – Others

Tensor network algorithms

These avoid the exponential scaling when extending DMRG to 2D

- m × m matrices are replaced by rank-4 tensors
- Projected Entangled Pair States (PEPS)
- Multi-scale Entanglement Renormalization Ansatz (MERA)

Main difficulty

- Contraction of rank-4 tensors (memory requirement $M \sim m^4$, time $T \sim m^{12} \Rightarrow T \sim M^3$)
- m = 5 possible on workstations, m = 10 needed for useful applications

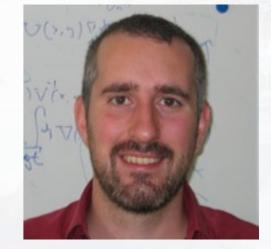
Refactoring of perfectly parallel applications

Quantum Monte Carlo (QMC)

Stochastic Series Expansion (SSE)

Importance sampling of terms in a Taylor expansion in coupling strength or inverse temperature

Team — UniGE



Thierry Giamarchi Principal investigator

Christophe Berthod QMC/DMFT

Adrian Kantian DMRG / t-DMRG

Pierre Bouillot DMRG / t-DMRG

Team – EPFL

Frédéric Mila co-Pl

Salvatore Manmana DMRG / t-DMRG

Sandro Wenzel SSE / QMC Jean-David Picon QMC / ED

Starting next fall:

Philippe Corboz Tensor algorithms

Team – ETHZ

Matthias Troyer co-Pl

Sergei Isakov QMC / ED

Evgeny Kozik QMC

Sebastiano Pilati Philipp Werner QMC

Ping Nang Ma

Brigitte Surer DMFT

Peter Anders DMFT

> Jan Gukelberger ED

> > **Bela Bauer** PEPS / MERA

As soon as possible:

Module 1 Exact diagonalization Module 2 DMRG

Module 3 Tensor algorithms Module 4 Refactoring of existing codes