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ITER: the way to fusion

EU, Japan, USA, China, India, South Korea, Russian Federation
> 5.3G€ construction cost (1/3 G € /y = 0.06% of world overall R&D)
Virtually inexhaustible, environmentally benign source of energy:

from Deuterium and Lithium; gives Helium. (Tritium is recycled)

Source:ITER
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(see next p)
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Magnetic confinement: tokamak
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Complexity: many nonlinearities

Geometry of magnetic configuration is an essential feature of fusion plasma physics
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Timescales in the ITER plasma
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Physics spans several orders of magnitude
Direct Numerical Simulation (DNS) of “everything” is unthinkable

Need to separate timescales using approximations
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Net energy transfer from the wave to the 
particles if

Collisionless Landau damping

0/ <∂∂ vf

Kinetic effects: wave-particle interaction

Surfers with velocity just below the 
phase velocity of the wave will be 
accelerated 

-> momentum and energy transfer

Surfers with velocity too different 
from the phase velocity of the 
wave will not ride the wave

General: distribution function in 6D phase space
To be solved with consistent electromagnetic fields

);,( tvxf rr

f

v
k/ω

),(),,( txBtxE rrrr



HP2C Lugano 16/17.03.2010 7

Gyrokinetic-Maxwell: summary
Assuming frequencies << cyclotron frequencies, 
analytical phase space reduction from 6D to 5D

A time evolution partial differential equation (PDE)  
describing the advection-diffusion in 5D phase space 
of the distribution function f
A set of 5 nonlinear, coupled ordinary differential 
equations (ODEs) for the characteristics
A set of integral – partial differential equations for the 
perturbed fields (potentials φ , A ) in 3D real space
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Gyrokinetic equations
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Solving GK: numerical approaches
Lagrangian: Particle In Cell (PIC), Monte Carlo

Sample phase space with markers and follow their orbits 
Noise accumulation is difficult to control in long simulations

Semi-Lagrangian
Fixed grid in phase space, trace orbits back in time
Multi-dimensional interpolation is difficult

Eulerian
Fixed grid in phase space, finite differences for operators
CFL condition; overshoot versus dissipation

Common to all three: Poisson (+Ampere) field solver
Various methods: finite differences, finite elements, FFT,…

ORB5 (Lagrange-PIC) code: in-house (CRPP) + Max-Planck-IPP

GENE (Euler) code: Max-Planck-IPP + CRPP
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ITER  global gyrokinetic turbulence 
simulation: computational requirements

Turbulence spatial scales down to gyroradius ρs = cs/Ωi cs=(Te/mi)1/2

Normalized size  = system size / gyration radius : 1 / ρ* = a / ρs

ITER: 1 / ρ* = ~ 1000
Relevant scales: resolve up to 
3D field solver: min 4 pts/wavelength

7’000’000’000 grid cells
Velocity space resolution: ~ 300 / cell  

2’000’000’000’000 phase space cells (or markers)
Time until statistical steady-state: ~ 2000 a / cs

~106 time steps
This is clearly unfeasible!
Cost of algorithm ~ (1 / ρ*)4 

1≤⊥ sk ρ
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Turbulence in magnetized plasmas…

…is very anisotropic

hot core

[S. Jolliet et al., Comput. Phys. Commun. 177, 409 (2007)]
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At the heart of the HP2C proposal: 
Field-aligned coordinates

reduction of 3D grid by factor ~ 1/ρ* (1000 for ITER)
requires major refactoring of existing codes (ORB5, GENE)       

and/or new code development (semi-Lagrangian)
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Parallelization scheme – ORB5 code 
Domain decomposition (toroidal direction)
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Massive parallelism - Scalability

IBM BG/P (Idris) (Deisa Extreme Computing Initiative)
8192 to 32768 cores

Cray XT-5 (CSCS) (thanks to Tim Stitt)
1024 to 8192 cores
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Bottlenecks to further scalability
Recent strong scaling tests up to 64’000 cores (on a 
BG/P JUGENE, Juelich) of ORB5 code scalability 
have revealed a saturation of the parallel efficiency
The problem comes from parallel data transpose 
operations (FFT and domain decomposition in the 
toroidal direction) which start to dominate cpu time
With the use of field-aligned coordinates, the amount 
of data to be transposed will be reduced by orders of 
magnitude (~ 1/ρ*) (typically 100-1000)
Requires major code refactoring
Other changes envisaged:

Domain decomposition in the radial direction
Hybrid MPI/OpenMP parallelization scheme
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ITER  global gyrokinetic turbulence 
simulation: computational requirements

Turbulence spatial scales down to gyroradius ρs = cs/Ωi cs=(Te/mi)1/2

Normalized size  = system size / gyration radius : 1 / ρ* = a / ρs

ITER: 1 / ρ* = ~ 1000
Relevant scales: resolve up to 
3D field solver: min 4 pts/wavelength

7’000’000’000 grid cells
Velocity space resolution: ~ 300 / cell  

2’000’000’000’000 phase space cells (or markers)
Time until statistical steady-state: ~ 2000 a / cs

~2 x 106 time steps
This is clearly unfeasible!
Cost of algorithm ~ (1 / ρ*)4 

1≤⊥ sk ρ

18’000’000’000

2 x 104

60’000’000

(1 / ρ*)2
feasible
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Timeline
2010

Formulation of the equations in field-aligned coordinates
Field solver code module development
First scalability tests of the solver
Implementation of the solver in the ORB5 code

2011
Implementation of the solver in the GENE code
Parallel scalability tests
Review further modifications of parallelization scheme (e.g. MPI+OpenMP)
Start the development of a new semi-Lagrangian code, in simplified geometry

2012
ITER-size simulations of ITG turbulence
Scalability tests with physical system size
Benchmark ORB5 vs GENE
Simulations including more physical effects
Assess potential of semi-Lagrangian code vs Lagrange-PIC (ORB5) and Euler 
(GENE) approaches
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Staff
CRPP-funded staff

Laurent Villard (PI), Stephan Brunner (co-PI), Trach-Minh Tran 
(co-PI)
Ben F. McMillan (Post-Doc), Sohrab Khosh Aghdam (PhD)

International collaborators
Alberto Bottino, Max-Planck IPP, Garching, Germany
Sébastien Jolliet, JAEA, Tokyo, Japan

HP2C-funded staff at CRPP
1 Post-Doc: Alessandro Casati, started 1st March 2010
1 PhD: T. Vernay (50%); 50%: open

Competence profile to be developed on both the physics side 
(turbulence, plasma physics, magnetic confinement) and the 
computational side (large codes, HPC, …)
Help from and interaction with CSCS will continue (and is deeply
appreciated!)

Porting, I/O, libraries, code profiling, diagnostics (e.g. 
visualization), …
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Conclusion
Thanks to this HP2C project, it is expected that we shall 
be in an ideal position in the scientific community of fusion 
plasma physics to address crucial issues related to the 
transport of heat, particles and momentum, and hence the 
quality of confinement, in ITER-like plasmas.

By anticipating our needs in terms of increasing physical 
system size and physical complexity and exploring the 
future evolution of HPC, this project will enable us to be 
ready to use the next generation of HPC platforms when 
they become available.

Many thanks to Prof Thomas Schulthess for driving this 
wonderful HP2C initiative. Thank you for your attention!
For a recent overview: X. Garbet, Y. Idomura, L. Villard, 
T.H. Watanabe, Nucl. Fusion 50, 043002 (2010)
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Gyrokinetic model: basic assumptions
Small parameter εg , with
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Gyrokinetic model

Assume 
Average out the fast motion of 
the particle around the guiding 
center
Fast parallel motion, slow 
perpendicular motion (drifts)
Strong anisotropy of turbulent 
perturbations (// vs perp to B)
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Guiding center motion in a tokamak

Y. Idomura et al., C.R. Physique 7 (2006) 650-669

“Passing” (top) and “trapped” (bottom) particle orbits: the guiding 
centres almost follow the equilibrium magnetic field. 
Left: 3D view. Right: projection on the poloidal plane
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Gyrokinetic equations

It is an advection equation along nonlinear characteristics:

: generalized potential

parallel motion
(FAST)

curvature and grad-Bmagnetic and ExB nonlinearities

drifts 
(SLOW)

mirror term

parallel velocity
nonlinearity

: conservation of the magnetic moment
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Gyrokinetic perturbed field equations
Poisson (or: quasi-neutrality) equation, here with Boltzmann electrons, 
linearized ion polarization density, long wavelength approx. ~

Ampère’s law, here neglecting δB//  and expanding ~
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ITG gyrokinetic global linear simulation

“CYCLONE” base case 1/ρ*=180. GYGLES code [M. Fivaz et al, CPC 111 (1998) 27]

Contours of 
perturbed 
potential

Linearised δf
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ITG gyrokinetic global linear simulation

m~170 wavelengths, solved with Nθ=64 grid points: how is it possible?

ITER-size “cyclone” case   1/ρ* = 1120



HP2C Lugano 16/17.03.2010 27

Resolving a longstanding problem: numerical 
noise in Lagrange-PIC simulations

Contours of non-zonal perturbed potential  φ − <φ>

Without noise control Noise-controlled

A numerical noise control algorithm has been developed, 
introduced in the ORB5 code, and successfully tested
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Noise destroys the avalanches and bursts

Without noise control Noise-controlled

Contours of R/LTi vs time and radius

The development and implementation of statistical numerical noise 
operators in the Lagrange-PIC global code ORB5 has been successful in 
allowing for truly statistical-steady-state numerical simulations with sources
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Noise control

When Signal/Noise ratio is lost, there is a decrease in transport and the
bursty nature of transport is suppressed

with noise control

without   

with noise control

without   
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